
P H Y S I C A L R E V I E W V O L U M E 1 3 1 , N U M B E R 6 15 S E P T E M B E R 1 9 6 3 

Asymptotic Solution of the Dirac Equation* 
S. I . RUBINOwf 

Stevens Institute of Technology, Hoboken, New Jersey 

JOSEPH B. KELLER 

Courant Institute of Mathematical Sciences, 
New York University, New York, New York 

(Received 26 February 1963) 

The WKB method is applied to solve the Dirac equation and the modified Dirac equation appropriate to 
a spin-§ particle with an anomalous magnetic moment. The solution consists of a phase factor multiplied by a 
spinor amplitude which is a power series in Planck's constant. The phase is a solution of the Hamilton-Jacobi 
equation of relativistic mechanics for a spinless particle without electric or magnetic moments. Each term in 
the spinor amplitude satisfies an ordinary differential equation along the relativistic trajectories. The equa
tion for the leading amplitude yields an equation for the polarization four-vector which is identical with that 
derived classically by Bargmann, Michel, and Telegdi. It also yields the law of conservation of probability 
in a tube of trajectories. In addition, it gives rise to an equation for a supplementary phase factor. By using 
the classical Hamilton-Jacobi function, the law of probability conservation, the polarization four-vector and 
the supplementary phase factor, the leading term in the solution of the Dirac or modified Dirac equation can 
be constructed. This solution should be useful when the wavelength of the particle is small compared to the 
characteristic distance associated with the electromagnetic potential through which the particle moves. When 
applied to the bound states of a particle without an anomalous moment in a spherically symmetric electro
static potential, it yields the same results as are usually obtained by separation of variables and use of the 
ordinary WKB method. The advantage of the present method is that it applies equally well to nonseparable 
problems. 

1. INTRODUCTION 

AN attempt was made by Pauli1 to solve the 
Dirac equation for a particle in an electromagnetic 

field using the WKB method. He sought a solution \p 
of the form 

* ' 
n=0 

(1) 

where h=h/2T. Upon inserting (1) into the Dirac 
equation and equating to zero the coefficient of each 
power of fo, he obtained equations for the scalar function 
S and the spinor functions an. S was found to satisfy the 
Hamilton-Jacobi equation of relativistic mechanics for 
a spinless charged particle without electric or magnetic 
moments, so it can be determined by means of the 
particle trajectories. However, an was found to satisfy a 
system of partial differential equations which Pauli was 
unable to solve in general. We have succeeded in 
solving them by reducing them to ordinary differential 
equations along the particle trajectories. In the same 
way, we have solved the modified Dirac equation 
appropriate to a particle with an anomalous magnetic 
moment. 

The equation for a0 leads to an equation for the 
precession of the polarization four-vector which was 

* This research was supported by the National Science Founda
tion under Grant No. 19671 and by the U. S. Office of Naval 
Research. 

f Also, Courant Institute of Mathematical Sciences, New 
York University, New York, New York. 

i W. Pauli, Helv. Phys. Acta 5, 179 (1932). 

derived classically by Bargmann, Michel, and Telegdi.2 

Quantum mechanically it holds exactly for a particle in 
a homogeneous field. We obtain this equation for 
inhomogeneous fields as well, but only to lowest order 
in h. Thus, according to our analysis the spin and 
moments do not affect the trajectories, but the moments 
affect the precession of the spin, which varies along the 
trajectory in accordance with the appropriate covariant 
equation of motion. Another consequence of the equa
tion for #o is conservation of probability in a tube of 
trajectories. A third consequence is an equation for an 
additional phase which depends upon the velocity and 
polarization. By employing the classical equations for 
the trajectories and for the polarization, we can 
construct do and S. Upon using them in (1) and neglect
ing higher terms, we obtain an approximate wave 
function constructed from classical quantities. This 
approximate wave function may prove useful in solving 
problems in which the particle wavelength is small 
compared to the characteristic lengths associated with 
the electromagnetic field, which is the nondimensional 
meaning of fi being small. 

We have constructed the approximate wave function 
for the ordinary Dirac equation for a particle in a 
uniform magnetic field and for bound states of a 
particle in a spherically symmetric electrostatic poten
tial. In each case the condition that \f/ must be single-
valued leads, in a known way,3 to the appropriate 

2 V. Bargmann, L. Michel, and V. L. Telegdi, Phys. Rev. 
Letters 2, 435 (1959). 

3 J. B. Keller, Ann. Phys. (N. Y.) 4, 180 (1958); J, B. Keller 
and S. I. Rubinow, ibid. 9, 24 (1960). 
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quantum conditions which determine the energy 
levels. In both cases the problems can be solved by 
separation of variables and application of the usual 
WKB method to the resulting separated equations. 
The results obtained in this way coincide with ours. 
Therefore, we do not present these examples. 

De Broglie4 has criticized Pauli's procedure, which 
we have followed, because the trajectories to which it 
leads are unaffected by the particle's electric and 
magnetic moments. In the next section we analyze this 
criticism and show to what extent it is valid. At the 
same time, we point out the limitations on the validity 
of Pauli's procedure. 

2. DE BROGLIB'S CRITICISM OF 
PAULFS PROCEDURE 

De Broglie's criticism of Pauli's procedure is based on 
the fact that the "limit" of quantum mechanics as h 
tends to zero is classical mechanics. Since electric and 
magnetic moments are classical concepts, they should 
remain in the classical "limit' ' and should affect the 
trajectories. In Pauli's procedure they do remain but 
they do not affect the trajectories, which depend only 
upon the charge and mass of the particle. This would 
appear to be a shortcoming of his procedure. However, 
the moments of an electron are proportional to fi and, 
therefore, they too vanish in the classical limit. (The 
equation for the precession of the magnetic moment 
involves only the ratio of the magnetic moment to the 
spin, from which ft cancels.) This vanishing of the 
moments seems to justify Pauli's procedure and to 
invalidate de Broglie's objection. Nevertheless, as we 
shall now show, his objection is valid despite the fact 
that Pauli's procedure is correct. The explanation of 
this paradoxical statement is that Pauli's procedure 
yields the correct result in inhomogeneous field regions 
and at fixed finite distances from them, but not at 
distances of the order h~l from them. The correct result 
at such distances can only be obtained by taking 
account of de Broglie's objection, and permitting the 
moments to affect the trajectories. 

To clarify the above explanation, let us consider the 
classical motion through an inhomogeneous field of 
finite extent of an electron with electric and magnetic 
moments proportional to fi. The angular deviation of 
the trajectory produced by the inhomogeneity is 
proportional to the moments of the electron, and thus 
proportional to ft. Therefore, as h tends to zero, the 
trajectory at every point approaches the trajectory of an 
electron with moments. However, the approach is not 
uniform at infinity. At a distance of order fi~l along 
the trajectory from the inhomogeneity, the lateral 
deflection of the trajectory is the product of the angular 
deviation of order ft and the distance of order h~l, which 
product is of order unity (i.e., independent of ft). There-

4 L. de Broglie, La Theorie des Particides de Spin 1/2 (Gauthier-
Villars, Paris, 1952), pp. 132, 128. 

fore, to obtain a description of the trajectories which is 
valid everywhere, including the neighborhood of 
infinity, it is necessary to include the effect of the 
moments even though the moments themselves vanish 
with fi. However, a description which is valid at any 
finite point, but is not uniformly valid at infinity, can 
be obtained by ignoring the moments. 

Let us now reformulate the preceding explanation 
analytically. We seek the asymptotic expansion of the 
wave function yp{x,ft) as fi tends to zero. If x is fixed, it 
is given by the WKB expansion (1) employed by Pauli. 
However, if x=fr1x', where xf is fixed, then the as
ymptotic exansion of ^(&~V, fi) as fi tends to zero is 
not given by (1). I t is given by a different expansion 
which would meet de Broglie's objection in that the 
trajectories would be affected by the moments. The 
first term in such an expansion could presumably be 
obtained from Schiller's5 approximate solution of the 
squared Dirac equation. We shall not determine that 
expansion in this paper. 

These considerations may become more understand
able by the examination of a familiar situation in which 
a similar phenomenon occurs, namely the occurrence of 
a shadow behind a sphere of radius a illuminated by a 
plane wave of wavelength X. We know that when X is 
much smaller than a, the shadow is essentially a 
circular cylinder of radius a, but that it disappears at 
about the distance a2/\ behind the sphere. Therefore, 
if we wish to determine the behavior of the shadow in 
the geometrical optics limit, in which \/a tends to 
zero, we must specify whether we want it at a fixed 
distance or at a distance a2/\ behind the sphere. At a 
fixed distance there is a shadow whose cross section is 
a circle while at a distance a?/\ there is no shadow. A 
uniform description would describe the circular shadow 
and its gradual disappearance as the distance increases. 

This example illustrates the main point involved in 
reconciling the viewpoints of Pauli and de Broglie. 
I t is that a function of x and a parameter fi may have 
more than one asymptotic expansion with respect to fi 
around # = 0 , and they are valid in different domains of 
x space. The validity domain of one expansion may 
even include that of another. In seeking an expansion, it 
is necessary to specify the domain in which it is to be 
valid. By ignoring this point, Pauli failed to realize that 
his expansion was not uniformly valid at infinity and 
de Broglie failed to see that what he wanted was an 
expansion which was uniformly valid everywhere, 
including infinity. The domain of validity of this 
expansion would include that of the WKB expansion 
considered by Pauli, but the expansion would be more 
difficult to determine. 

3. FORMULATION 

The modified Dirac equation for the wave function of 
an electron with an anomalous magnetic moment 

8R. Schiller, Phys. Rev. 128, 1402 (1962). 
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""*" d g - " l)efi/fnc may be written in the form 

Zyrihdp+iec-iAJ+inc— (Jg— 1) 

X (ieh/2fnc2)F^<rflv']\P=0. 

The notation in (2) is the following: 

dn=d/dxll, xli= (x,y,z,ici), ^4M= (Aa 
, i4 t f ,4„i$), 

(2) 

(3) 

Here x, y, z, and t are the Cartesian space coordinates 
and the time, respectively; c is the velocity of light; 
Ax, Ay, Az and <£> are the three components of the 
electromagnetic vector potential and the scalar poten
tial, respectively; FM„ is the electromagnetic field tensor, 
the index ju ranges from 1 to 4 and is to be summed over 
when it is repeated in a given term; m is the rest mass 
of the electron, (—e) is its charge, and g is its gyro-
magnetic ratio. The wave function \p is a four-component 
column vector and the yM are the 4 by 4 matrices 

L<ry 0 J 
7 = 1 ,2 ,3 ; 74 

Lo - l J 
(4) 

The <ij are the 2 by 2 Pauli spin matrices. When g—2, 
(2) becomes the usual Dirac equation. 

We seek a solution of (2) of the form (1). Therefore, 
we insert (1) into (2) and equate to zero the coefficient 
of each power of ft. This yields the equations 

(MrMY/H-mc)ao=0 > 

(iwpyp+mc)an= — r y A ^ - i — (ig— 1) (e/2mc2) 
X F ^ f l - i , w = l , 2, • 

Here w^ is defined by 

irp—divS-\-ec XA^ 

(5) 

(6) 

(7) 

Equation (5) is a system of linear algebraic equations 
for a0. I t has a nontrivial solution only if the coefficient 
matrix has a vanishing determinant, 

det (ix/)y-t-wc) = 0. (8) 

Upon evaluation of this determinant we obtain 

Ttiwfl+m2c2=0. (9) 

Equation (9) is just the single-particle relativistic 
Hamilton-Jacobi equation for the function S describing 
the motion of a spinless particle without electric or 
magnetic moments. 

When S satisfies (9) the matrix in (5) is found to have 
rank 2. Therefore, (5) has 4—2 = 2 linearly independent 
solutions. Denoting them by Bi and B2 we find 

Bi 

u 
0 
v 

B2 

0 " 
u 

— v. 

Here u, v, and w± are defined by 

U=mC—iTTi, V — TTz, W±=7rizbi7T2. (11) 

We shall later utilize two linearly independent left null 
vectors of the matrix in (5). These are easily found to 
be the Pauli adjoints of B± and B2, namely, 

5 1 = 5 1 t 7 4 = («*, 0, - » * , - w + * ) , 

B2==B2iyi== (0j u*y _«,_*, v*). (12) 

In (10) and (12) the * designates the Hermitian adjoint; 
i.e., the complex conjugate of the transpose, the overbar 
denotes the Pauli adjoint, and the asterisk denotes the 
complex conjugate. 

In terms of Bi and B2 we may write an as 

an=aniBi+an2B2+bn, i = l , 2 , (13) 

BjBj=—2iin(inc—iir±)bij\ i,j—1,2. (10) 

Here bn is a particular solution of (6) while an\ and an2 

are scalar functions which are so far undetermined. To 
determine them we consider Eqs. (6). These are 
inhomogeneous linear algebraic equations for an. They 
have solutions only if the right side is orthogonal to 
all the solutions of the transposed homogeneous 
equations. But these latter solutions are linear combina
tions of J§i and B2. Therefore, the conditions for solva
bility are obtained by multiplying (6) on the left by 
B\ and B2, which are left null vectors of the coefficient 
matrix. The resulting solvability conditions are 

Biy^^a^i— {\g— 1) (ie/2mc2)BiFlJiV(T(JiVanr-i=0, 

Bwidpdn-i— (|g— 1) (ie/2mc2)B2FfJiV(rflvan-i=0, (14) 

n=l, 2, • . . . 

These equations were obtained by Pauli1 for g=2. He 
did not see how to solve them in general. Instead, after 
deducing one consequence, related to Eq. (25) below, 
he turned to a special case. We shall show how to 
solve (14), in general. 

4. REDUCTION TO ORDINARY DIFFERENTIAL 
EQUATIONS 

Let us now substitute for an from (13) into (14). 
Then (14) becomes for n=0, 1, • • • 

(B1ylxBi)dfiani+ (-Bi7M5M51)anl+ (Biy^B^d^a^ 

+ (5 i7AB2)a»2- ( k ~ 1) (ie/2m<?) 
XBiFlxvaliV(anlB1+an2B2+bn) = —Biy^d^bn. (15) 

(B2y»Bi)dllani+ (B2y»dIJiB1)anl+ (B^^B^d^a^ 

+ (B2ylxdfiB2)an2- ( J g - 1 ) (ie/2m<?) 

XB2F»v(TtlV(0£nlBi+an2B2+bn)=: — BtfYpdpbn. (16) 

Here we have introduced bo= 0 to enable us to write the 
equations for n=0 together with those for n^O. For 
each n, Eqs. (15) and (16) are a pair of linear first 
order partial differential equations for an\ and an2. We 
shall now show that they can be reduced to ordinary 
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differential equations along the particle paths associated 
with (9). The reduction is based upon the following 
algebraic theorem. 

The integral in (26) is evaluated in Appendix I I and 
is found to be 

Theorem 
BjJuBjc = — 2i (mc—iir^TTfidjk, j,k=l,2. (17) 

- f a* 
mJTa 

,7Tu(fr=ln-
<Mr) 

da (TO) 
(27) 

This theorem can be proved by direct computation. A 
more algebraic proof is given in Appendix I. 

We now use (17) in (15) and (16). Then after 
multiplying these equations by [— 2i(mc—m)]-1 they 
can be written as 

Dani+CuOLnl+Cl2fXn2 

= [_2i{mc-iir,)']^Blly,dll- ( J g - 1 ) 

X(ie/2ntc2)FfiValiV'}bn, (18) 
D(*n2-{-C2l<Xnl-\-C22an2 

= C 2 i ( ^ - i 7 r 4 ) ] - 1 5 2 C T A - ( k - i ) 

X(ie/2mc2)Fllvatlv~]bn. (19) 

Here D and the dj are defined by 

D=Tlidll, (20) 

^y= [—2i(wc-i7r4)]_ 15£7MaM- (§g— 1) 
X (ie/2mc2)F}lvalxv']Bj, i, y = 1, 2. (21) 

Since D is a directional derivative in the direction 7r>, defined by 
(18) and (19) are ordinary differential equations along 
the curves to which w^ is tangential. These curves are 
the relativistic trajectories of a particle in the potential 
A p. An incorrect version of (18) and (19) for g=2 was 
given by de Broglie.4 

Let us now consider the case w=0, set aoi=ah 

oco2=a2j and assume that S is real. Then D is real and 
an immediate consequence of (18) and (19) for n—0 
is the equation 

D(ala^+a2a2^)+0L1a^{cii^-Ci^)+a2a^(c22^-C2^) 
+aia2*(cj1+ci2*)+a1*a2(ci»+c8i*) = 0. (22) 

The quantity da(j) is the three dimensional cross-
section of a narrow tube of trajectories containing the 
one under consideration, evaluated at the point r on 
this trajectory, da (TO) is the corresponding cross section 
at the point TO. Actually da (T)/da (TO) is the limit of 
the cross-section ratio as da (TO) tends to zero. When (27) 
is used in (26), it finally becomes 

[_mc—i-K4 (T) ~\da (TO) 
aiai*+a:2a!2*= (aiai*+a2a2*)ToZ :—. • (28) 

[mc—iin (To)^\da (r) 

This equation expresses conservation of probability in 
a tube of trajectories. 

We can now use the above results to simplify Eqs. 
(18) and (19) for ai and a2. To this end we introduce 
the two component vector 

(29) 

I t follows from (21) and the definitions of the Bi that 

Cii+Cii*==C22+C22* = diiTr>xJrD\n(mc—i7r4), (23) 

G21+Cw* = 0. (24) 

Thus, (22) becomes 

L > ( c W + < W ) + (cn+cii*) (c*iai*+cW) = 0. (25) 

To solve (25) we write D=md/dT where r is a param
eter along a trajectory which can easily be recognized as 
the proper time. Then, the solution of (25) is 

Then (18) and (19) with w=0, and (25) yield for 0 the 
equation 

Dp+Mp=0. (30) 

In (30), M is a square matrix of order two with elements 

Mij = Cij—ldyF^ij , (31) 

The determination of the solution a0 has now been 
reduced to the problem of finding the vector fi satisfying 
(30). Then a\ and a2 are given by (29) and a0 by (13), 
which becomes upon using (27) 

rda(To)-\1'1 

ao=\ ( M i + f t f t ) . (32) 
L Jcr(r) J 

The spinors Bt and B2 are given by (10) and (11). 

aiai*+a2a2* 

— (o:iQ:i*+a2Q:2: 

== (aiai*+a2a2*)Tl 

*)T0 expf / (cn+Cn*)dT J , 
\ mJr0 J 

mc—iir^T) / 1 rT \ 
expf / dM7rMdr 1 . 

(26) 

mc—m^To) 

5. PRECESSION OF THE POLARIZATION 
FOUR-VECTOR 

We shall now show that (30) implies the covariant 
equation of motion of the polarization four-vector 
along a particle trajectory. Furthermore, a solution of 
that equation can be used to construct the solution /? 
of (30). To this end we utilize the vector u, whose 
components are the Pauli spin matrices of order two. 
We multiply (30) from the left by /3+cr and obtain 

/3torjD/3+/3taJf/3 = 0. (SS) 
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The Hermitian adjoint of (33) is Here ic=(vi,V2,Ti). Upon using (36)-(44) in (35) we 
Av x x , v obtain the following equation for S : 

(DjStJcr/J+jStJft^^o. (34) 6 4 

Addition of (33) and (34) yields M = ~ { E X ^ * ^ * * ^ ^ ' ^ ( - - l ) 

rru- *• u . , . , . . , r / SX(EX^) SX[«X(HX«)]\1 
This equation can be concisely written m terms of W SXHH | ) [ . (45) 

the vector 2 defined by V mc mcimc—iiri) / I 
S = /3fy3. (36) We shall now introduce the polarization four-vector 

Sy=i(|8A*-j8i*ft), (38) 

From (36), the components and length 2 of X are J> *?<* s h o w t h a t ^ ^ b* expressed in terms of S. 
lo do so we recall that the spin current density is 

2x=/3i/32*+j3i*/32 , (37) given by i/iya^ with 75=71727374. Therefore, the flux 
of this current through a tube of trajectories of cross 
section da(r) is ^iy^y^da (r). Let us compute this flux 

23=/3i/3i*--i62jS2*, (39) by using the expansion (1) for \p and retaining only the 
first term so that \f/^eih~lsao. We shall call this flux the 

2=(2*M-V+2*2)12==0i£i +/52/32 . (40) p0iarization four-vector T^ multiplied by the fixed 
The matrix M, given by (31), involves Cij defined by c r o s s s e c t i o n d a ^ s o t h a t 

(21), which in turn involves Bi and B2 given by (10) --a-is- • -a - i s^ 7 ^ 
and (11). When Af is evaluated from these equations, T» = e d^iyby^e% . (46) 
it can be expressed in terms of the electromagnetic ^ r°' 
t e n s o r ^ , the components of which are the components U p o n u s i n g ( 3 2 ) f o r ̂  a n d t h e d e n n i t i o n (36) of ^ 
of the electric field E and the magnetic field H. Thus, w e n n ( j 

(EX*),+*E.« (g \ T=2wc(wc-m)S+2(flc.S)«, (47) 

2V4 \2 / 
11~2cl ^ mc-*V4 ^ 2 7 T^2i{mc-i^)W. (48) 

/ (EX*)* [>X (HX«)] , \ 1 I n (47) t h e v e c t o r T = = (ThT2,Tz). 
X ( Hz-\ 1 I [ , (41) Equations (47) and (48) show that the polarization 

V mc mc{mc—iic\) / J four-vector TM is expressible in terms of S. Since 2 
fFV ) - YFY 1 / \ satisfies (45), these equations will enable us to get an 

y^ \g —in I I ( \) equation satisfied by TM. To do so we shall first solve 
2c I V mc-iwi \2 J (47) for £ in terms of T. Thus, multiplying (47) by 

it • and solving for «• S yields 
/ (EX*)*-*(EX*)y 

X( Hx-iHy-\ ^ •S = C-2i7r4(wc--i.7r4)]~1^-T. (49) 

OX (HX*)],-C*X (HX«)]y 
Now (47) and (49) lead to 

J , (42) X = l2mc(mc-i7rA)J-1 

mc(mc-m,) / J X l T + p ^ K - m ) ] - 1 ^ - ! ) ^ } . (50) 

3^1= **!#» 1 My 1 ̂ E X ^ g + ^ E X ^ y 1 fg
 t \ To obtain the equation for Tm we need to know the 

2^1 * mc—iin \2 / equations for a trajectory 

(Ex*)*+;(Ex*)y DT^ - («A)*>. 
mc 

\* (\*%A M JL T /rav M This is the Lorentz force equation, which follows 
L « X ( H X « ) J g + ^ X ( H X ^ ) J y \ | directly from the Hamilton-Jacobi equation. It is 

mcimc—i-KAj / J ' convenient to utilize more common notation by 
recognizing that the four-velocity dxjdr is just 

eii (EX*)2—iE-Ts 
M22= \H.+ + ( ~ 1 ) dxt 

XI Hx+iHy+ = - (e / c ) ( - i iT4E+(«XH) ;+ iE .« ) . (51) 

V mc 

) ! • 

(H 
2cl mc—im \2 / —=7f_^j = — y (52) 

dr \c / mc 
/ (EX«). frX(HX«)lNl w h e r e 

V * mC mc(jnc-iird / \ ' 7= (1-^A2)~1/2- (53) 
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Then equations (45), (50), and (51) may be rewritten as for dT/dr becomes 

dX e [ 1 
— = SXH+ 
dr mc I mc(l-\-y) 

• [ E X ( E X * ) - s ( E . * ) ] 

+ f~lVsxH+—£X(EX«) 
\2 / V mc 

1 

m2c2 ( 1 + Y ) 
•XX[>X(HX*: >: ) | , (54) 

S = [ 2 W V ( 1 + T ) ] " 

d^z 

1 

dr 

and 

dy 

dr 

7E-

m2c2y(l~hy) 

HX* 

mc J 

(T-*)*J, (55) 

(56) 

-E-

Substituting (55), (56), and (57) into (54), we obtain 
the equation 

dl 1 

dr w 2 c 2 7 ( l + 7 ) \ dr J 

dl\ 
Tf lot 

e i (T-*)E r 
TXH+— (TXH).* 

MCI mcy L 

+ 
(T-*)(E-«) 

mcy 
"!—=—+(£-0 
Jm2c2y(l+y) \2 ) 

/ r«« r 
(TXH+ E - T-E-
\ mcy L 

(TXH).« 

wc(l+7) 

(T.*)(E.*)-

W 2 C 2 7 ( 1 + T ) . 

Multiplying (58) by w , we find that 

- ) 
(58) 

<*T e ( (T-x)E-* 
x = _ _ _ (TXH).^+ • 

dr mci mcy 

+ c-> (TXH).* 

(T-E) 

(T-*)E.w 

wry 

mc(l+7)(7—1) 

]!• 
(59) 

By substituting (59) back into Eq. (58), the equation 

rfT_ e \g\ 
dr mc[2L 

TXH+ E 
mcy K-'K-

T-E 

mcy 

(TXH)-« (T-«)(E.«) 
+ 

(mcy)2 (mcy)3 
>} (60) 

In a similar manner, the equation satisfied by 7^ is 
found to be 

j r 4 e% [g 

mc 12 
T-E+ c-> 

x -T-E4-
(TXH).« (T-«)(E-«)-

mcy (mcy)2 
(61) 

Equations (60) and (61) together are the covariant 
equations of motion for the polarization four-vector, 

(57) 2^= (T, r 4 ) , of an electron moving in an arbitrary 
electromagnetic field.2 

6. DETERMINATION OF g 

To solve for fi in terms of T, we use (50) to get X in 
terms of T and then (37)-(40) to get /3 in terms of X 
and hence of T. Thus, we find from Eqs. (37)-(40) 
that (3 may be expressed in terms of 2 as follows: 

~v2 

( S + S ^ e x p r — t a n - 1 
/S, \T 

(S-2,)1 /2exp ; M4 
(62) 

Inasmuch as four real functions are required to 
completely determine (3, it is seen that the three 
components of S leave a phase function 6 to be deter
mined. The equation for 6 may be found by substituting 
(62) into (30) and multiplying by (P. I t follows that 

l^Dd^^Dltein-^Xy/X^+^HM-M^. (63) 

By direct calculation it is found that 

& \ 1 (SXDS)2 
Z) tan-1! — ) = 

+v 
(64) 

and 

e ( (EX*) /g 
ip(M~W)p=—S- H+ — ' 

c I mc—i-ir* 

X H-

c-o 
EX* *X(HX*)" 

« ; mc(mc—iiri) 
(65) 
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Hence, with the use of (45), it follows from (63) that 

dO e S ( ( E X * ) 

dr 2mc 2* 2 +2 y
2 

+ 

mc(l+y) 

(g \ r (EX*) * X ( H X * ) - l l 
( - - 1 ) H + + . (66) 
\ 2 / L mc w 2 c 2 ( l+7 ) J J 2 C 2 ( l+7) . 

The solution may be written immediately as 

(S„Sy>0) 

(EX*) 1 (g 

2mc Jro S ^ + S , * 

If- mc(l+y) 

XpKEX* 

l+^-lWa+Y)]-1 

*X(HX*)" 
)+ 

mc 
(67) 

Here #o is the value of 6 at r — TO 

7. CONCLUSION 

We have now completed the determination of the 
zero-order solution a0 since (67) determines 0, (62) 
determines /3 and then (32) yields #o. Upon combining 
these results in (1), we obtain 

\f/^>e~ih 18ao= 
V2 L A T ( T ) 

C(s+s.) 1/2 

X e x p [ - | i tan-1 ( S , / S „ ) ] £ i + ( 2 - 2 , ) 1 / 2 

XexpGH tan"1 C&y/S*)]^] . (68) 

In (68), S is the relativistic Hamilton-Jacobi function, 
6 is a phase factor given by (67), d<r(To)/d<T(r) is the 
ratio of the cross sections of an infinitesimal tube of 
rays at TO and r, where r is proper time along a trajec
tory, 2 is a vector given in terms of the polarization 
four vector JTM by (55) and Bi and B2 are spinors given 
by (10). Although (68) may seem complicated, it 
actually involves only classical quantities associated 
with a classical trajectory. For that reason, it should be 
useful in the approximate solution of problems since 
classical quantities can be found by solving ordinary 
differential equations. Thus, the solution (68) is 
obtainable from the solution of ordinary differential 
equations even for nonseparable problems. 

To determine further terms in the expansion of \p, the 
ordinary differential equations (18) and (19) must be 
solved for n> 0. They can be analyzed in a way similar to 
that employed above for n=0 but we shall not do so. 

The result (68) and some of the calculations leading 
to it can be simplified somewhat by the introduction of 
a polarization basis for the solutions of the free Dirac 
equation (5) rather than the basis Bh Bi which we 
have employed. Our basis refers to an axis fixed in the 

laboratory coordinate system, while the polarization 
basis is a frame which refers to an axis that rotates with 
the polarization T, of the particle. In order to define 
this basis we first observe from the definition of TM that 
TuTp—O. Furthermore, from (60) and (61) it follows 
that {d/drjT^Tn—O so we may normalize Tp by setting 
7 ; r M = l . Then from (68) we find that \pty^yda(T0)/ 
da(r). We also find from (68) that iy^y^T^ — yp. Thus, 
(68) is an eigenvector of the operator iy^y^T,. Let us 
define the two vectors u+ and u- to be solutions of the 
free Dirac equation (5) normalized by the condition 
UJ^U±= 1 and satisfying 

iyby^Tflu±=±u±. (69) 

These vectors w± form the polarization basis and in 
terms of them (68) becomes 

p—ih-is+m r<Mro)"l1/2 

(70) 

The definition of u^ does not fix their phase, and (70) is 
true only if the phase of u+ is the same as that of the 
bracketed expression in (68). However, if the phase of 
u+ included the phase 0, then 6 could be omitted from 
(70). Of course, it would then remain present in u+. 
The use of the polarization basis together with some 
results of Bouchiat and Michel6 pertaining to it, can also 
simplify some of our other equations and calculations. 

APPENDIX I : PROOF OF THEOREM 

To prove the theorem of Sec. 3 we consider n Hermi-
tian matrices AfM and n real scalars p^ /x=l ,---w. 
Let G be the Hermitian matrix defined by 

(Al) 

Let X be a multiple eigenvalue of G and Bh • • •, Bq a set 
of corresponding orthormal eigenvectors which are dif
ferentiate functions of p,. Then 

Bj*Bk = &jk, 

GBk = \Bk. 

(A2) 

(A3) 

Let us now differentiate (A3) with respect to p, to 
obtain 

dBk d\ dBk 
M,Bk+G — B k + \ . (A4) 

dpn dpp dp, 

Multiplication of (A4) on the left by Bj+, the use 
of (A3), and the fact that G is Hermitian yield 

ax 
dp, 

(A5) 

5 C. Bouchiat and L. Michel, Nucl. Phys. 5, 416 (1958). 
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This is the desired result. The above derivation is 
essentially due to R. M. Lewis. 

To apply (A5) we first multiply (5) from the left by 
74 and obtain 

(̂ Tiyy 4YM+mcyi) a0 = 0. (A6) 

The matrices iy^j (j=l, 2, 3), 7474 and 74 are Hermi-
tian so they may be chosen as the AfM (/z= 1, • • •, 5) of 
the above analysis. When S is real, as we now assume, 
TTJ (j= 1, 2, 3), tin and mc are real and may be chosen to 
be the p^ (M= 1, • • •, 5) above. Then the matrix in (A6) 
is G and Bi and B2 given by (10) are two orthogonal 
eigenvectors of G corresponding to the eigenvalue \ = 0. 
They can be normalized by dividing them by an 
appropriate factor which can be found from (10). Now 
(A5) applies and yields, when the normalization of 
Bj is taken into account, 

BjHya„Pk= (dX/dp^l—HTr^mc—iir^jk, 
A*=l,2,3 (A7) 

B?ya±Bk = — 2iir± (mc—m) djk. (A8) 

In (A8) we have used the fact thet 7474 is the identity, 
so the left side is just B/Bk which is given by (10). 
Since Bjfy4=Bj, the left side of (A8) and —i times the 
left sides of (A7) are the left sides of the theorem, Eq. 
(17). The right side of (A8) is the same as that of (17), 
which proves (17) for ,u = 4. To prove it for /*= 1, 2, 3 
one may evaluate the left side for j=k = 1 and /*= 1, 2, 3 
to show that the right side has the value given by (17). 

APPENDIX II: EVALUATION OF AN INTEGRAL 

We shall now evaluate the integral in (26), the value 
of which is given in (27). To do so we consider a four-

dimensional volume V bounded by an infinitesimal tube 
of trajectories and by two three-dimensional orthogonal 
cross sections of the tube. Let the proper time at these 
ends of the tube be ro and r on one of the trajectories. 
Then by Gauss' theorem 

/ d^dV^ / irM-<WM=|*/*M|4(r) 
J v J s 

- | 7 T M ( T O ) M ( T O ) . (Bl) 

The surface integral in (Bl) is evaluated by noting that 
7i> is parallel to the sides of the tube so that Wn-dS^O 
there whereas 7rM is normal to the ends of the tube so 
7rM-^5M= \TTP(T)\A(T) on one end and = — |7rM(r0)| 

XA (ro), on the other. Here dSp denotes an element of 
the surface directed normally and A(T) is the cross-
sectional "area" of the tube at r. 

Let us rewrite (Bl) by noting that dV = A(r)icdr 
and that |TJ>(T) | =imc. Then (Bl) becomes 

ic / d^A (r)dr^imc[_A (r)-A ( r 0 ) ] . (B2) 
J TO 

Differentiating (B2) with respect to r and dividing the 
result by A (r) yields 

d/.T^md InA {r)/dr. (B3) 

Integrating (B3) yields 

1 r 
~~ \ dMirMrfr = ln[ i l ( r ) / i4( ro)] . (B4) 
mJTQ 

If we denote the cross-sectional area by da(r) instead of 
A(T), (B4) is exactly (27). 


